3. 低線量肺がんCT検診の 普及に向けて 一低線量スキャン技術の普及と それに対する画像管理

村松 禎久/荒井 美紀/新井 知大 国立国際医療研究センター病院

2010年11月10日朝, 購読している Web Magazine AuntMinnieからのメー ルに,「NLST results show drop in lung cancer deaths with CT screening: November 4, 2010 — Low-dose CT screening for lung cancer cuts lung cancer deaths by more than 20%, the U.S. National Cancer Institute (NCI) said today in its release of early results from the National Lung Screening Trial (NLST).」^{1), 2)}の文字が並んだ。 NLST の結果は思わしくないのではないか という事前情報が杞憂に終わり, すぐに 肺がん CT 検診の関係者にメール転送し たことを記憶している。

NLSTは、肺がんCT検診における世界 で初めての無作為比較試験の結果である。 ただし、重要な前提条件として、試験の 対象者はヘビーな喫煙者またはその経験 者であること、実効線量の平均が男性で 1.6mSv、女性で2.4mSvの"低線量ス キャンプロトコール"^{3),4)}で行われた結果 であることが挙げられる。

一方, 肺がんCT検診が先行して行われ てきた日本では,より精度高く,より適切 に実施していく人材を確保すべく,2009年 4月に肺がんCT検診認定機構⁵⁾が立ち上 げられた。そして,現在(2012年3月末) までに,1144名の認定医師と616名の認 定技師が誕生し,次の段階として装置管理, 線量管理,精度管理等に対する総合的な 施設評価(施設認定)に向けて活動が進め られている。

本稿では、低線量肺がんCT検診の普

及に向けて,低線量スキャンを可能とす る要素技術と適用を概説するとともに, 施設認定に向けた画像管理についても言 及する。

低線量スキャンを 可能にする要素技術

CT装置は長年にわたって技術開発が 行われ,近年は低線量スキャンを可能に する要素技術が数多く開発されてきた。 ここでは,その主な要素技術について概 略を述べる。

1. 国際安全規格

CT装置は国際安全規格(IEC60601-2-44)⁶⁾に従って、線量情報(CTDI, DLP, DE: dose efficiency) が開示, 表 示されるようになった。近々には、この 線量情報を指標とした CT Dose Check 機能が提案⁷⁾されている。この機能は, 事前にユーザー側で設定された2つの線 量指標 (CTDIおよび DLP) 値に対し、 スキャン条件を元に、スキャン前にオペ レータに認証請求が行われるものである。 設定値は2種あり、1つはDose Notifications Valueで、診断参考レベル (DRL)を勘案し設定される通常使用時 の線量値である。もう1つはDose Alerts Valueで、確定的影響等を基準に設定 される警告を与えるレベルの線量値であ る。どちらも仮に設定値を超えている場 合は, 警告の表示およびユーザー認証の 操作が必要となる。

2. CT-AEC (CT-automatic exposure control)⁸⁾

近年, CT-AECが開発・実用化され, ほとんどのCT装置に装備されるように なった。CT-AECの作動概念は、位置決 め撮影画像(スカウトビュー.スキャノ グラフィ, トポグラム, サービュー) また は直前(180°前)の投影データを基に、 被写体のX線透過度を推定し、X線出力、 主に管電流を自動的に変調する機構であ る。従来、診療放射線技師の経験や勘 に頼っていたX線出力, 主に管電流の 選択は、CT装置側によりほとんど自動 的に決定される。これにより、概念的には、 スライス位置間の大小に依存する画質の 差(スライス位置依存性). 被写体間の 大小に依存する画質の差(被写体依存 性)、およびスライス断面形状間に依存 する画質の差 (断面形状依存性)を低減 または解消する機構として知られている。

オーバーレンジングに対する コリメータ技術

頭部や一部の特殊な検査を除き,現 在はヘリカルスキャンによるデータ収集が 主流である。ヘリカルスキャンでは、スキャ ン開始位置と終了位置を設定する。また, 任意断面の画像再構成では,全角度の 投影データの作成のために,体軸方向の 補間が行われる。このため,開始および 終了位置の再構成画像を得るには,その 前後範囲の投影データが必要であり,そ れに合わせてX線を照射することになる。

 図1 CT-AEC使用の有無による管電流値(a)と画像ノイズ(b)の変化 スキャン条件:AEC未使用(30mA-定),AEC使用およびDR-Wedge付加。なお、スライス位置0は肺尖側、350は肺底側である。 a:LSCTファントム(京都科学社製)の各断面における管電流値の変化。
 b:LSCTファントム(京都科学社製)の各断面における画像ノイズの変化。
 (参考文献11)より引用転載)

図2 図1の各スキャン条 件におけるLSCT ファントムの冠状断 面のMPR像 (参考文献11)より引用 転載)

これをオーバーレンジングと呼んでいる。 理論的には、スキャン範囲が狭くビー ム幅の設定が広い、またはピッチファク タが大きいほどオーバーレンジングの影 響が大きくなる。この問題を解決する機 構として、スキャン開始前後にコリメー タを体軸方向に自動的に開閉する技術が 開発されている。同技術は、GE社では "Dynamic z-axis Tracking"、シーメン ス社では "Adaptive Dose Shield"、フィ リップス社では "Eclipse Collimator"、 そして東芝社では "Active Collimator" と呼ばれ、オーバーレンジングによる線 量付加分を最適化している。

4. 逐次近似(応用)再構成法9)

SPECTやPET画像では,現在,コン ピュータの高度化により代数的手法であ る逐次近似再構成法が一般化した。一方, CT は解析的手法であるフィルタ補正逆 投影法 (FBP) が主流である。しかし, 最近では, CT においても新たな画質改 善を見据えた逐次近似, またはそれを応 用した再構成法の導入が始まっている。

逐次近似再構成法では、X線の発生 源から検出器までの幾何学的情報や、 ビームハードニングや散乱線の挙動まで も考慮することが可能であり、空間分解 能の向上や各種アーチファクトの改善が 期待できる。しかし、膨大な処理を施す 逐次近似再構成では現実的な計算時間 には成り得ず、現在、ほとんどのメーカー から提供される再構成法は、逐次近似 を応用したものである。逐次近似(応用) 再構成法では、再構成画像から解剖学 情報を考慮した信号成分以外のノイズ 成分を抽出し、統計的モデルベース(ノ イズモデル、解剖学的モデル)との差異 を反復計算することで近似解に収束さ せるものである。そのため、反復再構成 法とも呼ばれている。

肺がんCT検診のための CT-AECの適用と評価

胸部はその解剖学構造から. 断面お よび体軸方向において複雑なX線減弱 過程を取る。すなわち、一定のX線出 力によるスキャンでは各断面の画質は一 定せず, CT-AECの良い適用となる部 位と言える。実際に、五味らのアンケー ト調査によれば、CT-AECが肺がんCT 検診においても約半数の施設で使用され ていることが報告10)されている。そして, 平均的な男性を想定したスキャン条件に おいて、120kV-51mAs以上を選択する 施設の割合がAEC未使用では17%にも かかわらず, AEC 使用では43%と高値 を示している。また、CTDIvolも同様に、 AEC未使用で16%, AEC使用では 47%となっている。

また、五味らは別の論文¹¹⁾で、肺が んCT検診にCT-AECを適用する上に おいて、CT透視用に開発されたボータ イフィルタ(DR-Wedge:東芝社製)を 利用し、かつ適切な画質設定レベルを選 択することにより、DLPを増加させるこ となく肺尖から肺底部までの画質が向上 し、かつ均一化できるとしている。

図1,2は,その結論に至る重要な結果の引用である。LSCTファントム(京